
Improved Sea Ice Forecasting through Spatiotemporal Bias Correction

HANNAH M. DIRECTOR

Department of Statistics, University of Washington, Seattle, Washington

ADRIAN E. RAFTERY

Department of Statistics, and Department of Sociology, University of Washington, Seattle, Washington

CECILIA M. BITZ

Department of Atmospheric Sciences, University of Washington, Seattle, Washington

(Manuscript received 21 March 2017, in final form 18 July 2017)

ABSTRACT

A new method, called contour shifting, is proposed for correcting the bias in forecasts of contours such as

sea ice concentration above certain thresholds. Retrospective comparisons of observations and dynamical

model forecasts are used to build a statistical spatiotemporal model of how predicted contours typically differ

from observed contours. Forecasted contours from a dynamical model are then adjusted to correct for ex-

pected errors in their location. The statistical model changes over time to reflect the changing error patterns

that result from reducing sea ice cover in the satellite era in both models and observations. For an evaluation

period from 2001 to 2013, these bias-corrected forecasts are on average more accurate than the unadjusted

dynamicalmodel forecasts for all forecastmonths in the year at four different lead times. The total area, which

is incorrectly categorized as containing sea ice or not, is reduced by 3.33 105 km2 (or 21.3%) on average. The

root-mean-square error of forecasts of total sea ice area is also reduced for all lead times.

1. Introduction

Dynamical models of the climate have considerable

predictive capability. However, these predictions can

differ systematically from observations. Models drift

from their initial conditions and toward their internal

mean state as a result of errors in their model physics

(Meehl et al. 2014). Imperfections in obtaining or rep-

resenting initial conditions also factor into these sys-

tematic differences (Collins 2002; Hazeleger et al. 2013).

Bias correction has emerged as a way to correct for these

errors. This class of methods develops statistical repre-

sentations of the error patterns in climate models using

retrospective comparisons of observations and model

output. These statistical representations are then used to

correct for the expected error in predictions obtained

from dynamical model forecasts (Maraun 2016; Meehl

et al. 2014).

Arctic sea ice cover has decreased substantially in

recent years, causing increased interest in predicting it

(Comiso et al. 2008; Stroeve et al. 2012b). Dynamical

models forecast quantities such as sea ice concentration,

thickness, and age on a spatial grid. ‘‘Perfect model’’

experiments, which predict results within a climate

model rather than on observed variables, have been

used to evaluate the predictability of sea ice. These

methods, which avoid effects from errors in model

physics or initial conditions, suggest that skillful fore-

casts could be obtained on at least seasonal time scales

(Blanchard-Wrigglesworth et al. 2011b; Day et al. 2014;

Tietsche et al. 2014) with significant skill for 1–2 years

(Guemas et al. 2016). However, current dynamical

forecasts only show significant skill for 3–5-month lead

times (Guemas et al. 2016). In the Sea Ice Outlook,

where predictions for sea ice are annually compiled

and compared, Stroeve et al. (2014) found prediction

skill to be only marginally better than the skill obtained

just from estimating the linear trend. More recently,Corresponding author: Hannah M. Director, direch@uw.edu
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Blanchard-Wrigglesworth et al. (2015) found that dy-

namical models are also unskilled at predicting each

other, suggesting varied errors in model physics and/or

initial conditions across prediction systems. Current

forecasts are notably affected by which (if any) bias

correction technique is applied (Blanchard-Wrigglesworth

et al. 2017; Fu�ckar et al. 2014). This suggests that improved

bias correction could reduce the gap between the hypo-

thetical predictability of sea ice and the skill currently

being obtained.

A range of techniques have been proposed for

bias-correcting forecasts from dynamical models. The

simplest approach, typically referred to as mean bias

adjustment, corrects forecasts based on the difference in

the anomalies of predictions and observations (Meehl

et al. 2014), sometimes computing different climato-

logical means for each time period under consideration

(García-Serrano and Doblas-Reyes 2012). Additional

approaches have been introduced to account for ‘‘con-

ditional bias,’’ or when the bias changes as a function of

some other factor (Goddard et al. 2013). These include

techniques for correcting bias that vary with forecast

time (Kharin et al. 2012), lead time (van Oldenborgh

et al. 2012), and initial conditions (Fu�ckar et al. 2014),

among others.While thesemethods are an improvement

over mean bias adjustment, as Goddard et al. (2013)

note, nonlinear relationships between the model drift

and forecasted value, initialization shocks, and imper-

fect model responses to forcings all remain challenges

for designing appropriate bias correction methods. Ex-

tended logistic regression (Wilks 2009) and hetero-

skedastic extended logistic regression (Messner et al.

2014) have also been used to jointly bias correct and

calibrate forecasts of sea ice extent (Krikken et al. 2016).

While adjustments are typically applied to a summary

measure or to each grid box independently, explicit

spatial models of bias have also recently been suggested

(Arisido et al. 2017).

For sea ice in particular, bias correction has focused

on correcting summary measures, such as the total sea

ice area or extent (Fu�ckar et al. 2014; Krikken et al.

2016). However, many current stakeholders require in-

formation about the spatial pattern of sea ice. For ex-

ample, with the growth of commercial vessel traffic in

some regions of the Arctic, there is increased interest in

identifying safe routes for ships to follow (Huntington

et al. 2015; Smith and Stephenson 2013; Stephenson

et al. 2014). Forecasters who produce spatial maps of sea

ice currently do not have adequate approaches to di-

rectly bias correct the predictions they receive from

dynamical models. They must either ignore the known

bias in the model output or make ad hoc adjustments to

where the sea ice is located based only on whether bias

correction methods for the total sea ice area indicate too

little or too much sea ice. This latter approach is prob-

lematic, since knowing that the total sea ice area is over

or underestimated does not guarantee that any partic-

ular location will see more or less sea ice than predicted

from the dynamic model. This means that it is unclear

where additional sea ice should be added to the model

prediction or where existing ice should be removed.

Recognizing these limitations of current methods, we

propose a new bias correction technique that corrects

spatial error in sea ice models. This enables the pro-

duction of more accurate spatial predictions than un-

corrected dynamical model output.

We focus our bias correction efforts on the marginal

ice zone. This is where high concentrations of ice change

over to open water (Strong 2012) and where the highest

amount of error in forecasting occurs (Tietsche et al.

2014). Specifically, we seek to improve the positioning of

the contour surrounding contiguous grid boxes with at

least 15% ice concentration, a line we refer to as the sea

ice contour. The general idea of our bias correction

approach is to record how far and in what direction the

observed and predicted contours extend from various

fixed locations. Using historical data, we can then model

the difference between the observation and retrospec-

tive prediction at each location and how the difference is

changing over time. This provides a bias correction that

can be applied to move a new predicted contour to

match an observed contour more closely. We refer to

this method as contour shifting, since it captures this

notion ofmoving the contour obtained from a dynamical

model prediction to a new, more accurate location.

To illustrate how contour shifting can make a pre-

diction more accurate, we compare in Fig. 1 a predicted

contour obtained from a dynamical model and its bias-

corrected version. Due to some irreducible forecast er-

ror, the bias-corrected contour is not expected to lie

exactly on the observed region. Here, as in the re-

mainder of the paper, the predictions are from the

CM2.5 Forecast-Oriented Low Ocean Resolution

(FLOR) model produced by the National Oceanic and

Atmospheric Administration’s Geophysical Fluid Dy-

namics Laboratory (GFDL; Vecchi et al. 2014; Msadek

et al. 2014). The observations are from the National

Aeronautics and Space Administration (NASA) Boot-

strap monthly sea ice concentrations obtained from the

Nimbus-7 SMMR and DMSP SSM/I–SSMIS passive

microwave satellites (Comiso 2000, updated 2015).

The potential for increased skill from spatial bias

correction becomes apparent when comparing where

sea ice was predicted to where sea ice was observed in

historical data. In Fig. 2, we map the regions of dis-

agreement between forecasts and observations for

9494 JOURNAL OF CL IMATE VOLUME 30

Unauthenticated | Downloaded 01/17/23 08:38 PM UTC



February, September, and December Arctic sea ice in

three successive years. In examining the regions of dis-

agreement between observations and predictions for

particular forecast months, we see some regions and

months, such asHudsonBay inDecember, where sea ice

is repeatedly observed but never predicted. Similarly,

we observe some regions where sea ice is repeatedly

predicted but not observed, such as the Bering Sea in

February. This suggests we could obtain more accurate

forecasts by correcting persistent errors of this type.

The paper is organized as follows. Section 2 describes

the implementation of contour shifting. We discuss how

to statistically model the spatial pattern of error using

historical comparisons of predictions and observations

and how this can be used to bias correct predictions from

dynamical models. In section 3 we evaluate the

reduction in error this technique provides for predicting

both the spatial pattern of the sea ice and the total sea

ice area. Section 4 concludes the paper with discussion.

2. Contour-shifting method

a. Mapping ice sections

Contour shifting corrects the bias in predictions of the

sea ice contour by relating where the sea ice edge (i.e., the

15% concentration contour) is predicted in a dynamical

model to where the sea ice edge is observed. Thus, to

implement contour shifting, we must develop a way to

consistently represent the observed and predicted edges

of sea ice. To do this, we compare how the predicted and

observed sea ice edges relate to fixed reference locations

and how their difference changes over time.

Although sea ice is often a broken jumble of floes,

most floes accumulate in contiguous sections touching

land. This makes it natural to consider how far sea ice

extends off land and in what direction. We develop a

mapping system accordingly. Figure 3 is an example of

how we can map the boundary of predicted or observed

regions of sea ice from land. Specifically, we designate

fixed lines along many of the borders between land and

ocean fromwhich we can record how far sea ice extends.

We represent these lines as sequences of spatial points,

sr 5 (sr,1, sr,2, . . . , sr,nr), where r denotes the region of

the Arctic in which the fixed line is located. Multiple

regions and corresponding fixed lines are used in this

framework to obtain more detailed representations of

the location of sea ice than could be obtained with a

single region. Spatial points are placed on the boundary

line between the ocean and the land everywhere the line

intersects a corner of a grid box. In Fig. 3, these points

are plotted as black circles. When connected in order,

the points sr exactly trace the boundary between land

and ocean. Henceforth, to simplify notation, we sup-

press the region subscript.

To define how sea ice extends off a fixed line in a par-

ticular region, we consider each contiguous section of sea

ice that borders the fixed line. For each section, we iden-

tify all the points on the boundary of the section that in-

tersect the fixed line. If there are k such points, we space k

points evenly along the rest of the section boundary,

which we denote by s0 5 (s01, s
0
2, . . . , s

0
k), and refer to this

as the mapped line. Specifically, we divide the section

boundary line into k 1 1 equal-length increments and

place a point at the k divisions between these increments.

We then pair up the points on the mapped line with the

points on the fixed line sequentially and draw a vector

connecting each pair. These two-dimensional vectors,

which we denote by m5 (m1, m2, . . . , mn), provide a

FIG. 1. Predictions for the 15% sea ice concentration contour

obtained from the GFDL model with a 4-month lead time (red)

and bias corrected using contour shifting (navy blue) for February

2012. The observed sea ice region is plotted in light blue. The black

regions are part of the ‘‘nonregional ocean’’ in the ocean mask

described in section 2a and are excluded in this analysis. The re-

mainingwhite area represents grid boxes with sea ice concentration

less than 15%.

1 DECEMBER 2017 D I RECTOR ET AL . 9495

Unauthenticated | Downloaded 01/17/23 08:38 PM UTC



FIG. 2. Maps indicating where the prediction of the presence of sea ice, defined as grid boxes with sea ice

concentration of at least 15%, differed from observations for February, September, andDecember from 2011 to

2013. Regions where sea ice was predicted but not observed are in red, and regions where sea ice was observed

but not predicted are in blue. Predictions are fromMay initializations. For example, the prediction in February

2011 was initialized in May 2010, while the prediction for September and December 2011 was initialized in

May 2011.
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‘‘map’’ of the sea ice extending from the land border, and

we refer to them as mapping vectors. They are plotted in

Fig. 3 colored by direction. This technique does not con-

strain vectors on corresponding predictions and observa-

tions to go in the same direction.

A given point i on the mapped line can be repre-

sented as

s0i 5 s
i
1m

i
. (1)

Sequentially connecting the points on s and then on s0

provides a close approximation to the original bound-

aries of the sea ice sections. Regions and their associated

fixed lines are selected to reflect where typical breaks in

the sea ice occur and other physical boundaries. In Fig. 4,

we show the R 5 12 regions outside the center of the

Arctic and their fixed lines used in this analysis. These

regions were obtained by modifying a region mask de-

scribed in Parkinson and Cavalieri (2008) and available

from the National Snow and Ice Data Center (National

Snow and Ice Data Center 2017). In regions that are

nearly or completely enclosed by land, we have desig-

nated the fixed line to be some portion of the land

boundary. If there is a portion of the land boundary

where the sea ice clearly more commonly abuts, we use

this portion. Otherwise, this selection is arbitrary. In two

regions, the fixed line includes a small portion of the

region boundary in addition to points on land. This is

done to maintain a continuous fixed line where sea ice

typically abuts while respecting region boundaries.

Compared to other regions, the sea ice edge in the

center of the Arctic can follow more varied paths. We

therefore need a modified definition of how to map this

region. Our approach is illustrated with a sample map in

Fig. 5. We first designate an additional region for the

center of the Arctic, indexed asR1 1. Then, we create an

artificial set of reference lines and record where the sea ice

intersects them. Specifically, we define an arbitrary point c

near the middle of this central Arctic region and then ex-

tend lines from c to thenR11 points on the region boundary

that intersect the lattice of the spatial grid. In Fig. 5, c is

indicated with a black point. We record the farthest point

from cwithin the boundary of the sea ice in the region that

intersects each line i as s0R11,i. We let sR11,i5 c for all i. As

for other regions, we can then build a mapping vector

mR11,i to connect sR11,i and s0R11,i and write

s0R11,i 5 s
R11,i

1m
R11,i

. (2)

The resulting mapping vectors are shown in Fig. 5 col-

ored by their direction. Unlike in other regions, the

angles of the vectors in the central Arctic are fixed and

the same for observations and predictions. Connecting

the points of sR11,i in order approximately maps out the

edge of the sea ice.

Completing this process for allR1 1 regions for a single

observation or prediction gives R 1 1 sets of coordinates

of fixed lines and associated mapping vectors. The vectors

will vary for different observations and predictions, but

the coordinates will be the same for any observation or

FIG. 3. Examples of mapping vectors for the Bering Sea and the Sea of Okhostk in (left) an observation and

(right) prediction for February 2008. The colored areas denote grid boxes with at least 15% sea ice concentration

observed (light blue) and predicted (green). The black points indicate the fixed line on land from which the points

are mapped, and the color of the arrows indicate their direction. The arrowheads point to the mapped line. Only

every seventh point and line is displayed for ease of visualization. The prediction was initialized in November 2007.

The corresponding time series for the three blue numbered points are given in Fig. 6.
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prediction. This means we can develop a detailed spatial

picture of how a predicted sea ice edge compares to an

observed sea ice edge. We need only evaluate the differ-

ences in themapping vectors along each point on the fixed

lines. Repeating this process for a collection of observa-

tions and predictions enables relating predictions and

observations to one another over time and space. For

example, we can conclude that a prediction creates too

much sea ice in a particular location if the vectors asso-

ciated with predictions in that location tend to be longer

than those associated with the observations. Similarly, we

can assess if sea ice cover is decreasing over time in a re-

gion if the vectors associated with coordinates in this re-

gion typically get shorter over time.

b. Estimating the bias

Now that we have established a way to represent the

sea ice edge, we can turn to the issue of estimating bias.

With this mapping framework, increasing the accuracy

of the sea ice edge can be achieved by reducing the error

in the forecasts of the locations of the observed mapped

points s0i,obs for all locations i. At the time a forecast is

issued any s0i,obs is unknown and must be predicted for

each i. We denote a prediction of this quantity by ŝ0i,obs.
This follows the statistical convention of using the hat

symbol above an unknown quantity to indicate a pre-

diction or estimate of that quantity. We denote the

mapped point obtained from the prediction from the

dynamical model at location i by s0i,pred. While this

quantity is a prediction, the hat notation is not used,

since s0i,pred is known at the time the forecast is issued.

With this notation, we can now proceed to bias correc-

tion. We will use s0i,pred and a model for how s0i,pred is

expected to differ systematically from s0i,obs to obtain a

bias-corrected forecast ŝ0i,obs for s
0
i,obs.

To do this, we first need to isolate the systematic dif-

ferences between observations and predictions in the

mapped lines. The observed mapped point at location i,

s0i,obs, can be expressed as a function of both observations

and predictions. Beginning with Eq. (1), we canwrite the

observed mapped point at any location i as

s0i,obs 5 s
i
1m

i,obs
5 s

i
1m

i,pred
1 (m

i,obs
2m

i,pred
). (3)

Further, s0i,pred 5 si 1mi,pred by definition, so we have

s0i,obs 5 s0i,pred 1 (m
i,obs

2m
i,pred

). (4)

In other words the observed mapped vector at location i

can be written as a sum of the predicted mapped vector

at location i and the difference between the observed

and predicted mapping vectors, mi,obs 2mi,pred. This

difference comes from both systematic discrepancies

between the prediction and observation and irreducible

error. We can decompose this error as

m
i,obs

2m
i,pred

5E[m
i,obs

2m
i,pred

]1 e
i
, (5)

whereE[mi,obs 2mi,pred] denotes the expected systematic

difference between the prediction and observation and

ei represents the irreducible error, which we assume to

be random with mean zero.

We now focus on modeling and correcting the sys-

tematic component of the error. Our goal is to obtain an

unbiased estimator for si,obs. In general, an unbiased

estimator, û, is a function of data or other covariates that

is used to predict a quantity u and that on average has the

same value as u; that is, E(û)5 u. Assuming we can ob-

tain an unbiased estimator for E[mi,obs 2mi,pred], de-

noted by bE[mi,obs 2mi,pred], we have that

ŝ0i,obs 5 s
i
1m

i,pred
1 bE[m

i,obs
2m

i,pred
] (6)

FIG. 4. Map of the fixed lines from which regions will be built.

Region boundaries over ocean are in black, and each colored line

within a region is the fixed line from which ice will be mapped. The

large region in the central Arctic does not have a fixed line as is

discussed in Section 2a.
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is an unbiased estimator for s0i,obs. We can show this by

taking the expectation of the estimator:

E[̂s0i,obs]5E[s
i
1m

i,pred
1 bE[m

i,obs
2m

i,pred
]]

5 s
i
1m

i,pred
1m

i,obs
2m

i,pred
5 s

i
1m

i,obs
5 s0i,obs.

(7)

This means that on average the predicted position of the

ith mapping point will be the same as the ith mapping

point that will be observed. This is in contrast to s0i,pred,
which on average will be at a position E[mi,obs 2mi,pred]

units away from s0i,obs. This error decomposition and

correction has some similarities to what was proposed by

Kharin et al. (2012) but provides results for many spatial

locations rather than for a single summary measure.

The derivation in the previous paragraph presupposes

that we have an unbiased estimator of E[mi,obs 2mi,pred].

Obtaining an approximately unbiased estimator is feasible

with sufficient historical data and retrospective forecasts.

We can map the observed and predicted sea ice regions

using the technique described in section 2a. If the dynam-

ical model bias was fixed over time, we could then estimate

the bias at each location simply as the average difference

between the observed and predicted mapping vectors for

each year in the dataset. However, this approach fails to

account for the rapid change occurring in the Arctic.

Both model predictions and observations show a re-

duction in sea ice over time, but the rates of decline are

not the same, both in total and for individual regions. For

total sea ice extent, Stroeve et al. (2012a) found that the

trend in most prediction systems is less than observed. To

account for this, we extend the method proposed by

Kharin et al. (2012) for bias-correcting total sea ice area to

spatial contours. In their approach, the total sea ice area in

observations and predictions are each regressed sepa-

rately on time. Then, the regression models are used to

estimate the predicted and observed sea ice area at the

forecast time. The difference between these quantities is

used as an estimate of the bias at the forecast time.

Extending this approach to our spatial setup, we es-

timate the bias at each point on the fixed line using re-

gression. Outside the central Arctic, we regress each of

the x and y components of the mapping vectors for the

observation and the prediction separately on time. For

each point i on the mapped line, this gives four re-

gression equations of the form,

m
i
5 â

i
1 b̂

i
t1 «

i
, (8)

for the observed x component, observed y component,

predicted x component, and predicted y component.

The «i are error terms. Consequently, the predicted bias

in the mapping line at location i and time t is

bE[m
i,obs

2m
i,pred

]5 m̂
i,obs

2 m̂
i,pred

, (9)

where each m and m̂ are vectors with an x and y compo-

nent. The terms m̂ are the same as in Eq. (8), except with

the error terms removed. To estimate the regression

FIG. 5. Sample of mappings in the central Arctic region for September 2008 (left) for the observation and (right)

for the prediction with lead times of 4 months. The directions of the colored lines emanating from a central point in

the region, indicated with a black circle, are fixed for all predictions and observations. On each line, the farthest

point from the center of the region that intersects the sea ice edge is recorded. These points are those that the

arrowheads touch. The line connecting these points forms an approximation to the boundary of the sea ice. Only

every seventh line is plotted for ease of visualization.
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parameters, we use HuberM-estimation, a form of robust

regression (Huber and Ronchetti 2011). Implemented in

R using the rlm function, this technique minimizes a

function of the residuals that puts reduced weight on

outlying values (Venables and Ripley 2002). This is ap-

propriate in this context, since we do not want a few un-

usual years to have undue influence on the trend lines. In

Fig. 6, we plot the x and y components of several obser-

vations and predictions along with regression lines for the

sample points highlighted in Fig. 3.

In the central Arctic, the mapped points are con-

strained to stay on specific lines, so the mapping vectors

can be represented by just their lengths rather than by

separate x and y components. Consequently, for region

R 1 1, we let

bE[m
i,obs

2m
i,pred

]5 m̂
i,obs

2 m̂
i,pred

5 (â
i,obs

1 b̂
i,obs

t)2 (â
i,pred

1 b̂
i,pred

t),

where eachm is now a single length rather than a vector.

This reduces the number of parameters that need to be

estimated but otherwise does not affect the bias cor-

rection procedure.

c. Finalizing a prediction

To finalize a prediction, we replace the mapped points

with the bias-corrected mapped points and connect

them in the same way as in section 2a. Any sections of

sea ice predicted that do not touch land outside the

FIG. 6. Time series for the three sample points in Fig. 3 used to predict the bias in February 2012 at a lead time of

4months: (left) x coordinate and (right) y coordinate. Circles are recorded data and diamonds are the prediction for

2012 obtained via HuberM-estimation, a form of robust regression. Blue indicates observation and green indicates

prediction. The expected bias is the difference between the two diamonds.
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central Arctic region are not bias corrected; that is,

they are left as predicted by the dynamical model. In

the central Arctic region, sea ice sections that are not

part of the largest contiguous region are also left

unadjusted.

Some issues with the bias-corrected contour remain. In

some cases the resulting contour line will intersect itself,

making it an invalid boundary for a contiguous region. To

remove these self-intersections, we simplify the sections of

the contour surrounding self-intersections with the

Douglas–Peucker algorithm (Douglas and Peucker 1973).

This algorithm takes in a line, represented as a sequence

of connected points, and outputs a new line that resembles

the original line. The new line uses as few points as pos-

sible while ensuring that the new line differs by no more

than a user-specified tolerance « from the original line.

For each section of the contour that contains a self-

intersection, we replace it with a similar line obtained

with the Douglas–Peuker algorithm.

The tolerance « is determined by an automated process.

The Douglas–Peuker algorithm with a low « is initially

applied to the contour and a check is performed to

determine if self-intersections remain. If there are self-

intersections, « is increased and the Douglas–Peuker

algorithm is run again. This process is repeated until an

« is found that is large enough to give a contourwith no self-

intersections. In our analysis, we set the initial « to 0.25 on

the nominal 25-km grid and increase it by 0.25 as needed.

In this way, we create a final bias-corrected contour

that does not contain any self-intersections. It is also

possible that a bias-corrected prediction will go through

land. When this is the case, we simply remove the land

contained within the region enclosed by the contour, so

that the contour line goes through the interior edge of

the land region. Examples of both of these adjustments

to a contour are given in Fig. 7. Finally, sections of sea

ice that have been expanded such that they now overlap

are merged into a single section of sea ice.

FIG. 7. Example of modifying a bias-corrected contour when the contour line crosses over itself and/or passes

through land. (top) A sample contour. The red box highlights a region where the contour (purple) crosses over itself

and the yellow box highlights a region where the contour goes through land. (bottom) These sections are zoomed in

on, showing (left) the original contour and (right) the contour after correction. All issues have been corrected by

removing land regions and applying the algorithm described in section 2c.
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d. Implementation and software

Wehavemade our implementation of contour shifting

available in the IceCast R package (Director et al. 2017).

The software package includes a one-line automated

execution function that takes in observations and pre-

diction and outputs bias-corrected predictions. Addi-

tionally, all intermediate functions and their code are

accessible within the package. Interested users can use

these intermediate functions to gain more flexibility in

how contour shifting is implemented or to extend or

modify this method. A vignette, or tutorial within the

package, discusses the IceCast package in more detail

and provides examples of its use.

Within the package two main functions are used to

execute contour shifting. The first function maps obser-

vations and predictions, and the second estimates the bias

and creates the new prediction based on results from the

first function. On a typical laptop, mapping the prediction

and observation for a single year takes around a minute.

Given the mappings, estimating the bias correction and

creating a new prediction for a single year takes about a

minute. In other words, computation time to bias correct a

single year of predictions given N years of observations

and predictions is roughlyN1 1min.However, ifmultiple

years are bias corrected, the computation time per year is

notably reduced since the mappings for each previous

year used to learn the bias need to be calculated only once.

There is some variability in computation time depending

on the forecastmonth.Monthswith less sea ice tend to run

faster than average, since there are fewer regions with sea

ice to map and bias correct. The opposite is true for

months with more sea ice. While contour shifting does

have greater computational cost than existingmethods for

bias correction of the total sea ice area or extent, it pro-

vides substantially more information about where sea ice

is expected to be located. Further, relative to the cost of

running a full dynamical forecasting system, the compu-

tation time is trivial.

3. Results

a. Experimental setup

To evaluate this bias correction approach, we consider

retrospective predictions of monthly sea ice concentra-

tion from the CM2.5 FLOR model produced by the

National Oceanic and Atmospheric Administration’s

GFDL from 1981 to 2013 (Vecchi et al. 2014; Msadek

et al. 2014). This fully coupled global climate model has

approximate atmospheric resolution of 50 km 3 50km

and approximate ocean resolution of 18 3 18. This pre-
diction system has 12 ensemblemembers associated with

it. The predictions were downloaded from the Earth

System Grid (National Center for Atmospheric Research

2017) and have been converted from their native grid to

the nominal 25-km polar stereographic grid used by

NASA Bootstrap using weights obtained from the

spherical coordinate remapping and interpolation pack-

age (Jones 1997). For total sea ice, this model is known to

be of high quality for forecasting the mean state (Msadek

et al. 2014). However, this does not mean that there is not

spatial bias, since for total sea ice estimates over-

estimation of sea ice in one region can compensate for

underestimation of sea ice in another region. This type of

error, referred to as misplacement error, has been shown

to form a substantial fraction of the total error in many

model predictions (Goessling et al. 2016).

For our analysis, we consider monthly forecasts that

have been initialized on the first day of themonth and run

for a year. This gives 12 initialization times per year. To

obtain the prediction for the 15% sea ice edge corre-

sponding to the ensemble forecast, we average the con-

centration in each grid box over the ensemblemembers to

create a field of the average concentration. Then, we find

the 15% sea ice edge for this averaged field.

To assess contour shifting’s effect on prediction accu-

racy, we apply it to forecasts for all 12 months at four

different lead times. We evaluate all forecast months be-

cause sea ice has varying behavior and potential pre-

dictability during different parts of the year, such as

differing persistence by season (Blanchard-Wrigglesworth

et al. 2011a). Since forecasts are for monthlong periods,

there can be some ambiguity in the definition of lead time.

We report lead times rounding up to the nearest whole

month. For example, a prediction for the monthly sea ice

concentration for February made on 1 January is de-

scribed as being made at a lead time of 2 months. For any

prediction, we use all data prior to the forecast year to

estimate the bias correction. Results are reported for

2001–13. This corresponds to years where there were at

least 20 years of data available prior to the forecast year

from which to build the bias model.

Predictions from this model are compared to observa-

tions of the monthly sea ice concentration obtained from

the NASA satellites Nimbus-7 SMMR and DMSP SSM/

I–SSMIS. The observations have been processed by the

bootstrap algorithm and are distributed by the National

Snow and Ice Data Center (Comiso 2000). The original

landmask for the observations has been replaced with the

simpler land mask (derived from approximately 18) used
in the predictions. We define a grid box to contain sea ice

if it has at least 15% sea ice concentration.

b. Spatial error reduction

In Fig. 8, we map the initial GFDL prediction and the

bias-corrected forecast of the sea ice contour on top of
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FIG. 8. Predictions for the 15% sea ice concentration contour obtained from the GFDL model with a

4-month lead time (red) and bias-corrected using contour shifting (navy blue) for February, September,

and December from 2011 to 2013. The observed ice region is plotted in light blue. The black regions are

part of the ‘‘nonregional ocean’’ in the oceanmask described in section 2a and are excluded in this analysis.

The remaining white area represents grid boxes with sea ice concentration less than 15%.
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the observed sea ice for several example months and

years. In many cases, the bias-corrected contour clearly

follows the observed sea ice boundary more closely than

the uncorrected dynamical model prediction does, in-

dicating that bias correction is improving the forecast.

To quantitatively assess the improvement due to

contour shifting, we use the integrated ice-edge error

(IIEE) measure proposed by Goessling et al. (2016).

The IIEE is an aggregatemeasure of the amount of error

in a prediction. It is obtained by adding up the areas

where ice is predicted but not observed and the areas

where ice is observed but not predicted. For all months

and lead times, we see a reduction in the average IIEE

after bias correction has been applied. In Fig. 9, we re-

port the mean error reduction of this measure for all

forecasts months at four different lead times. Figure 10

reports the mean percent change in the IIEE. For all

months and lead times, we obtain an average reduction

in the IIEE of 3.33 105 km2, or 21.3%. In Fig. 11, we plot

the average IIEE for the years 2001–13 organized by

forecast month for the unadjusted GFDL forecasts and

for the bias-corrected forecasts. From this we can see the

increased prediction skill that bias correction provides

for each month. For example, for March, we see that the

average IIEE for bias-corrected forecasts at all lead

times is less than the lowest average IIEE for the un-

adjusted forecasts. This means that a bias-corrected

forecast issued 12 months in advance is more accurate

on average than an unadjusted forecast issued 2 months

in advance. Similarly, the average IIEE for unadjusted

September forecasts issued 2 months in advance is

13.83 105 km2. This is greater than the average IIEE for

the bias-corrected forecast at a 2-month lead time

(12.3 3 105 km2) and a 4-month lead time (13.4 3
105 km2). This indicates that on average for September a

bias-corrected forecast issued 4 months in advance is

more accurate than an unadjusted forecast issued both 2

and 4 months in advance. In summary, bias-correcting

contours obtained from dynamical sea ice forecasts with

contour shifting leads to more accurate forecasts of the

sea ice contours. Again, we note that a portion of the

IIEE is from irreducible forecast error.

To compare performance across months and lead

times, we look at the percent error reduction results in

Fig. 10. We note that the amount of error reduction in a

given month is not directly related to the IIEE in the

original forecast. Rather, the amount of error that can

be corrected is a function of how much systematic

error a prediction has. Contour shifting will provide the

most error reduction when there is a notable amount of

error that follows consistent patterns. Contour shifting

will provide less error reduction when the unadjusted

forecast is quite accurate or its error is highly variable.

The largest percent-error reductions occur for forecasts

in the winter and in May. These months have large, con-

sistent errors across years. For example, the month of

December has a high amount of error overall and the

errors are repeated across years. As can be seen in Fig. 8,

underestimation of sea ice in Hudson Bay and over-

estimation of sea ice off the coast of Greenland north of

Iceland and in the Barents Sea occur in most years. Thus

these errors can be well corrected by contour shifting.

On the other hand, the smallest percent-error reductions

occur from June to September. The adjusted IIEE values

are only marginally better than the unadjusted IIEE

values. This suggests that random, rather than systemic,

errors dominate during these months and/or that our bias

correction method is not identifying systematic errors.

Mechanistically, this is plausible. In early summer, the

heterogeneous surface of the Arctic is especially affected

by the ice-albedo feedback (Blanchard-Wrigglesworth

et al. 2011a) and in late summer and early fall there is

the highest proportion of thin ice, which leads to more

FIG. 9. The reduction in the mean IIEE (105 km2) over the test

years 2001–13 for bias-corrected predictions compared to the

original GFDL predictions at four different lead times. For each

year, the IIEE is defined to be the sum of all areas where sea ice is

predicted but not observed or where sea ice is observed but not

predicted. Results are rounded to one decimal place.

FIG. 10. As in Fig. 9, except with the percent change in mean error

area. Results are again rounded to one decimal place.
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variability (Holland et al. 2011). Variability makes it less

likely that a consistent discrepancy between models and

observations would occur and makes it so that more data

would be needed to detect any bias that is there. For ex-

ample, looking at consecutive September observation and

predictions in the second column of Fig. 8, the only re-

peated error pattern is a small underestimation of sea ice

off the northeastern part of Greenland. The interior of the

Arctic Ocean is variable and not substantially affected by

bias correction.

No clear patterns emerge in performance across lead

times, suggesting that contour shifting can be applied to

obtain more accurate forecasts for lead times up to at

least a year. We also find little effect of lead time on

IIEE even after bias correction. This suggests that initial

conditions strongly affect forecast accuracy at these time

scales. This result aligns with that ofMsadek et al. (2014)

for this dynamical model, who infer that initial condi-

tions are a primary factor in predicting sea ice extent at

lead times up to a year.

c. Total sea ice area

While the key contribution of contour shifting is the

ability to bias correct a contour, this technique can also

be employed to bias correct the total sea ice area. Sea

ice area refers to the total area of grid boxes with sea

ice concentration of at least 15%. To obtain a bias-

corrected estimate of the total sea ice area with contour

shifting, one simply needs to sum the areas contained

within the bias-corrected contour. This approach gives

comparable performance to existing bias correction

techniques focused exclusively on correcting total sea

ice area estimates.

To illustrate this, we implement the trend bias cor-

rection technique introduced in Kharin et al. (2012) and

the initial condition technique introduced in Fu�ckar

et al. (2014). The approach of Kharin et al. (2012)

requires regressing observed total sea ice area on time

and regressing predicted total sea ice area on time. The

difference in the regression lines at the forecast time is

then used to estimate and correct for the expected dif-

ference in total sea ice area between the observation and

the prediction at the forecast time. The initial condition

approach is similar, except that instead of regressing on

time, the observed and predicted total sea ice areas are

regressed on information describing their initial condi-

tions. In our implementation, we regress on the ob-

served monthly sea ice areas for the month prior to

initialization.

In Fig. 12, we plot the root-mean-square error

(RMSE) for predictions of the total sea ice area ob-

tained versus the forecast month for four lead times. We

do this for the GFDL model alone and with the various

bias correction techniques. In Table 1, we also summa-

rize this information by lead time. We found RMSE to

be lower for the bias-corrected forecasts than for the

unadjusted GFDL predictions for all the bias correction

techniques, highlighting the importance of bias correc-

tion for obtaining accurate sea ice forecasts. For all lead

times, contour shifting had lower RMSE than all the

other methods considered. Contour shifting performed

best around the time when sea ice reached its minimum.

This differs from the Kharin et al. (2012) technique,

which performed best around June. Overall this analysis

shows that contour shifting not only improves the pre-

diction of the sea ice contour but also leads to more

accurate estimates of the total sea ice area.

4. Discussion

Wehave proposed and implemented contour shifting, a

novel technique for bias correcting a prediction of a

contour of sea ice at a particular concentration, a typical

definition of the sea ice edge. Retrospective comparisons

FIG. 11. Average IIEE for the years 2001–13 by month for the unadjusted GFDL model

output (red) and bias corrected with contour shifting (blue). The different line types indicate

the lead time.
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of observations and predictions are used tomodel how the

contour obtained froma dynamicalmodel typically differs

from the contour observed. New predicted contours are

then adjusted to correct for the expected discrepancy. This

approach goes beyond existing bias correctionmethods by

addressing the spatial configuration of the sea ice rather

than just summarymeasures of the total amount of sea ice.

In our experiments, contour shifting reduced error in all

forecast months and lead times considered. The total area

where the prediction and the observations disagree, or

IIEE, was reduced by 3.3 3 105km2, or 21.3%, on aver-

age. Contour shifting also produced error reductions in

forecasts of the total sea ice area that were better than

existing bias correction methods that focus only on

forecasting this summary measure. The methodology of

contour shifting is not specific to the 15% sea ice con-

centration threshold used in this paper. After categorizing

grid boxes as being above or below a different threshold, a

bias-corrected contour for another threshold can be ob-

tained in the same way as the 15% threshold.

We have evaluated spatial prediction accuracy using

the IIEE measure (Goessling et al. 2016). Since contour

shifting leads to substantial error reduction, which

evaluation criterion is used is not of great importance.

Any reasonable criterion summarizing areas of dis-

crepancy between observations and predictions would

likely show improvement of forecast accuracy with bias

correction. However, as Dukhovskoy et al. (2015)

highlight, there are a number of properties that an ideal

sea ice measure should have. As further spatial bias

correction methods are developed, more nuanced

measures could be useful for distinguishing among them.

a. Method comparisons

A simple alternative to contour shifting for obtaining

spatial predictions of sea ice would be to independently

apply an existing bias correction technique to each grid

TABLE 1. Root-mean-square error for the total sea ice area pre-

dictions for years 2001–13 for all forecast months. GFDL refers to the

unadjusted dynamical model. The other rows are for bias-corrected

versions of these forecasts. Contour shifting is the bias correction

method described in this paper. Trend refers to the bias correction

method given inKharin et al. (2012), and initial condition refers to the

bias correction method given in Fu�ckar et al. (2014). Bold indicates

the lowest value in each column.

Method

Lead time (months)

Mean2 4 7 12

GFDL 4.41 4.77 5.22 4.98 4.84

Contour shifting 3.06 3.58 4.00 4.22 3.71

Trend 3.25 3.65 4.13 4.45 3.87

Initial condition 3.47 4.07 4.40 4.78 4.18

FIG. 12. The RMSE for the total sea ice area prediction at four different lead times using four

different methods. The black line (GFDL) is for the unadjusted dynamical model. The other

lines are for bias-corrected versions of these forecasts. The red line (contour shifting) is for the

bias correction method described in this paper. The green line (trend) is for the bias correction

method given in Kharin et al. (2012), and the purple line (initial condition) is for the bias

correction method given in Fu�ckar et al. (2014).
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box. This does notably reduce the IIEE compared to an

unadjusted prediction. However, bias correcting each

grid box independently occasionally leaves scattered

grid boxes or groups of grid boxes that contain sea ice in

an area that is otherwise open water or vice versa. We

show examples of this occurring in Fig. 13 using pre-

dictions obtained with a slightly modified version of the

bias correction proposed by Kharin et al. (2012). Spe-

cifically, we modify the Kharin et al. (2012) approach to

account for the range of values that concentrations can

FIG. 13. Predictions of regions with sea ice concentration of at least 15% (green) forMarch 2001 and July 2001 bias

corrected using a variation of the Kharin et al. (2012) approach where logistic regression is used in place of linear

regression and concentrations are (left) rounded to bewithin the interval [0, 1] and (right) bias correctedwith contour

shifting. The red boxes (left) highlight disconnected sets of a few grid boxes containing sea ice within open ocean and

holes of a small number of grid boxes within large contiguous sections of sea ice.

1 DECEMBER 2017 D I RECTOR ET AL . 9507

Unauthenticated | Downloaded 01/17/23 08:38 PM UTC



take by replacing linear regression with logistic re-

gression and rounding adjusted concentrations down to

1 or up to 0 as needed.

While the artifacts in Fig. 13 are not that common, they

illustrate why assuming independence of grid boxes is

problematic, especially for binary data. The modeling and

computation needed to ensure these artifacts never occur

is substantial. A statistical spatial model over the field

would be appropriate, but the presence of land and other

physical features and the size of the grid complicate the

design of an appropriate and computationally tractable

covariance structure. Working instead with the lower-

dimensional structure of a contour avoids this limiting

frame. It also opens up the possibility of extensions to this

method, such as covariate-based time series models or

probabilistic modeling, which would be computationally

challenging to model directly on a full grid.

In section 3a, we define the 15% contour with respect

to the concentration level estimates obtained from the

ensemble mean for each grid box. However, this is not

the only way the sea ice contour could have been de-

fined. For example, in the Sea Ice Outlook produced by

the Sea Ice Prediction Network, each grid box in each

ensemble member is defined as containing sea ice or not,

based on its concentration. The average of these values

is used as a summary of each grid box (e.g., Sea Ice

Prediction Network 2014). While common, in this case

this approach gives a slightly larger average IIEE for the

GFDL forecasts than the technique described in section

3a. This suggests that further investigation is needed to

determine how best to convert ensemble model output

into a single binary prediction for each grid box. Re-

gardless, even for these alternative definitions of the

contour, contour shifting still produces substantial error

reductions over unadjusted forecasts.

Connecting two contours withmapping lines has some

parallels to the objective curves proposed by Strong

(2012) for measuring the marginal ice zone. His ap-

proach to matching up curves cannot be applied here

since it requires full knowledge of both the predicted

and observed curves which we do not have at the time a

forecast is issued. However, the similar aspects of these

methods highlight the need for techniques that relate

contours systematically. We expect that other system-

atic approaches to matching contours could be used in

the general framework of contour shifting with success

comparable to the method we have proposed.

b. Limitations and future work

Expected changes in sea ice concentration leave some

questions open about how spatial bias correction will

perform in the future. There is currently limited analysis

of how the predictability of sea ice will change over time.

Using ‘‘perfect model’’ experiments (which test the

ability of a model to predict its own sea ice state),

Holland et al. (2011) and Tietsche et al. (2013) both infer

that potential skill in predicting sea ice extent will de-

cline. The resulting increase in irreducible error may

reduce the performance of bias correction, since biases

are more difficult to identify and model in a system with

more variability. Additionally, perfect model experi-

ments provide no insight into how biases between

models and observations might change. If, in the future,

errors are less consistent, the performance of bias cor-

rection will decrease, even if the total area in error does

not increase. The general pattern of themapping vectors

in the model and observations may also change over

time or could be affected by long-term variability. We

have been able to obtain substantial error reductions on

average using the simple assumption that the time series

for the components of all mapping vectors follow a

consistent linear trend. However, were the relationships

between the model and the observation to change or

were the relationships found to be more complicated on

multidecadal time scales, we might need more complex

time series models, such as state-space models, to re-

spond to changes in the trend and to accurately repre-

sent nonlinear structure (e.g., Brockwell and Davis

2016). Covariate information could also prove useful.

Also, as the concentration of sea ice decreases, non-

contiguous sections of sea ice that do not border land

and holes in the sea ice may become more common.

While an ideal bias correction method would provide a

way to correct these features, our analysis does not ad-

dress these cases. This is because there are currently

insufficient examples of observations and predictions

exhibiting these phenomena across space to be able to

confidently develop a model for their bias. As more data

become available, methodological extensions to contour

shifting to address biases in these features could be de-

veloped and assessed. For example, it would likely be

feasible to build a model to identify and correct for re-

gions where the size and/or frequency of holes are over-

or underestimated.

Given the extensive development effort and large

computational cost required to run dynamical fore-

casting systems, extracting all possible information from

their predictions is of considerable importance. Without

bias correction methods that account for the spatial

nature of climate data, predictions from these systems

can only produce biased spatial information or bias-

corrected summary measures. This work represents a

first step to overcoming this limitation for sea ice. With

contour shifting, we can now use dynamical model out-

put to correct sea ice concentration contours so they

have reduced systematic differences from observations.
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